Cqt-based Convolutional Neural Networks for Audio Scene Classification
نویسندگان
چکیده
In this paper, we propose a parallel Convolutional Neural Network architecture for the task of classifying acoustic scenes and urban sound scapes. A popular choice for input to a Convolutional Neural Network in audio classification problems are Mel-transformed spectrograms. We, however, show in this paper that a ConstantQ-transformed input improves results. Furthermore, we evaluated critical parameters such as the number of necessary bands and filter sizes in a Convolutional Neural Network. These are non-trivial in audio tasks due to the different semantics of the two axes of the input data: time vs. frequency. Finally, we propose a parallel (graphbased) neural network architecture which captures relevant audio characteristics both in time and in frequency. Our approach shows a 10.7 % relative improvement of the baseline system of the DCASE 2016 Acoustic Scenes Classification task [1].
منابع مشابه
Cqt-based Convolutional Neural Networks for Audio Scene Classification and Domestic Audio Tagging
For the DCASE 2016 challenge on detection and classification of acoustic scenes and events we submitted a parallel Convolutional Neural Network architecture for the tasks of classifying acoustic scenes and urban sound scapes (task 1) and domestic audio tagging (task 4). A popular choice for input to a Convolutional Neural Network in audio classification problems are Mel-transformed spectrograms...
متن کاملComparison of Time-Frequency Representations for Environmental Sound Classification using Convolutional Neural Networks
Recent successful applications of convolutional neural networks (CNNs) to audio classification and speech recognition have motivated the search for better input representations for more efficient training. Visual displays of an audio signal, through various time-frequency representations such as spectrograms offer a rich representation of the temporal and spectral structure of the original sign...
متن کاملA New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملDeep Sequential Image Features for Acoustic Scene Classification
For the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE2017), we propose a novel method to classify 15 different acoustic scenes using deep sequential learning, based on features extracted from Short-Time Fourier Transform and scalogram of the audio scenes using Convolutional Neural Networks. It is the first time...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016